Derivative from First Principles (Ab Initio Approach)
For a function \( y = f(x) \), the derivative is given by
\[
\frac{dy}{dx} = \frac{d}{dx} f(x) = f'(x).
\]
Using the limit definition,
\[
f'(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}.
\]
When we find the derivative of a function \( y = f(x) \), written as \( \frac{dy}{dx} \), we say that we are differentiating \( y \) with respect to \( x \). This process of computing the derivative is called differentiation.
Let us apply on some of the elementary functions.
I. For the function \( y = x^a \) where \( a \in \mathbb{R} \), the derivative is given by
\[
\frac{dy}{dx} = ax^{a-1}.
\]
To establish this result rigorously for rational values of \( a \), we use the first principles definition of the derivative:
\[
\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}.
\]
Substituting \( f(x) = x^a \),
\[
\lim_{\Delta x \to 0} \frac{(x + \Delta x)^a - x^a}{\Delta x}.
\]
Using the binomial expansion for small \( \Delta x \) (valid when \( a \in \mathbb{Q} \)),
\[
(x + \Delta x)^a = x^a \left( 1 + \frac{a \Delta x}{x} + \frac{a (a-1)}{2} \left(\frac{\Delta x}{x}\right)^2 + \dots \right).
\]
Thus,
\[
(x + \Delta x)^a - x^a = x^a \left( 1 + \frac{a \Delta x}{x} + \frac{a (a-1)}{2} \left(\frac{\Delta x}{x}\right)^2 + \dots \right) - x^a.
\]
Simplifying,
\[
(x + \Delta x)^a - x^a = x^a \left( \frac{a \Delta x}{x} + \frac{a (a-1)}{2} \left(\frac{\Delta x}{x}\right)^2 + \dots \right).
\]
Dividing by \( \Delta x \),
\[
\frac{(x + \Delta x)^a - x^a}{\Delta x} = x^a \left( \frac{a}{x} + \frac{a (a-1)}{2} \frac{\Delta x}{x^2} + \dots \right).
\]
Taking the limit as \( \Delta x \to 0 \), higher-order terms vanish, leaving
\[
\lim_{\Delta x \to 0} \frac{(x + \Delta x)^a - x^a}{\Delta x} = a x^{a-1}.
\]
Thus, for rational values of \( a \),
\[
\frac{d}{dx} x^a = a x^{a-1}.
\]
This result extends to irrational values of \( a \) using the continuity of the derivative function and the density of rationals in the real numbers.
II. Let us find the derivative of \( \sin x \) using the first principles definition. The derivative is given by
\[
\frac{d}{dx} \sin x = \lim_{\Delta x \to 0} \frac{\sin(x + \Delta x) - \sin x}{\Delta x}.
\]
Using the sum-to-product identity,
\[
\sin(x + \Delta x) - \sin x = 2 \cos \left( x + \frac{\Delta x}{2} \right) \sin \left( \frac{\Delta x}{2} \right),
\]
we substitute this into the limit:
\[
\lim_{\Delta x \to 0} \frac{2 \cos \left( x + \frac{\Delta x}{2} \right) \sin \left( \frac{\Delta x}{2} \right)}{\Delta x}
= \lim_{\Delta x \to 0} 2 \cos \left( x + \frac{\Delta x}{2} \right) \cdot \frac{\sin \left( \frac{\Delta x}{2} \right)}{\Delta x}.
\]
Rewriting the fraction,
\[
\lim_{\Delta x \to 0} 2 \cos \left( x + \frac{\Delta x}{2} \right) \cdot \frac{\sin \left( \frac{\Delta x}{2} \right)}{\frac{\Delta x}{2}} \cdot \frac{1}{2}.
\]
Since
\[
\lim_{\Delta x \to 0} \frac{\sin \left( \frac{\Delta x}{2} \right)}{\frac{\Delta x}{2}} = 1,
\]
we get
\[
\lim_{\Delta x \to 0} 2 \cos \left( x + \frac{\Delta x}{2} \right) \cdot 1 \cdot \frac{1}{2}
= \lim_{\Delta x \to 0} \cos \left( x + \frac{\Delta x}{2} \right).
\]
Taking the limit,
\[
\cos x.
\]
Thus,
\[
\frac{d}{dx} \sin x = \cos x.
\]
This completes the proof using the first principles definition.
III. Let us find the derivative of \( e^x \) using the first principles definition. The derivative is given by
\[
\frac{d}{dx} e^x = \lim_{\Delta x \to 0} \frac{e^{x + \Delta x} - e^x}{\Delta x}.
\]
Rewriting the numerator using exponent properties,
\[
e^{x + \Delta x} - e^x = e^x e^{\Delta x} - e^x = e^x (e^{\Delta x} - 1).
\]
Substituting this into the limit,
\[
\frac{d}{dx} e^x = \lim_{\Delta x \to 0} \frac{e^x (e^{\Delta x} - 1)}{\Delta x}
= e^x \lim_{\Delta x \to 0} \frac{e^{\Delta x} - 1}{\Delta x}.
\]
The key limit result,
\[
\lim_{\Delta x \to 0} \frac{e^{\Delta x} - 1}{\Delta x} = 1,
\]
follows from the definition of \( e \) as the base of the natural logarithm. Applying this,
\[
\frac{d}{dx} e^x = e^x \cdot 1 = e^x.
\]
Thus,
\[
\frac{d}{dx} e^x = e^x.
\]
This proves that the derivative of \( e^x \) is \( e^x \), a fundamental property of the exponential function.
IV. Let us find the derivative of \( \ln x \) using the first principles definition. The derivative is given by
\[
\frac{d}{dx} \ln x = \lim_{\Delta x \to 0} \frac{\ln (x + \Delta x) - \ln x}{\Delta x}.
\]
Using the logarithmic property,
\[
\ln (x + \Delta x) - \ln x = \ln \left( \frac{x + \Delta x}{x} \right) = \ln \left( 1 + \frac{\Delta x}{x} \right),
\]
substituting this into the limit,
\[
\frac{d}{dx} \ln x = \lim_{\Delta x \to 0} \frac{\ln \left( 1 + \frac{\Delta x}{x} \right)}{\Delta x}.
\]
Rewriting,
\[
\frac{d}{dx} \ln x = \lim_{\Delta x \to 0} \frac{\ln \left( 1 + \frac{\Delta x}{x} \right)}{\frac{\Delta x}{x}} \cdot \frac{1}{x}.
\]
Using the standard limit result,
\[
\lim_{u \to 0} \frac{\ln (1 + u)}{u} = 1,
\]
where \( u = \frac{\Delta x}{x} \), we obtain
\[
\lim_{\Delta x \to 0} \frac{\ln \left( 1 + \frac{\Delta x}{x} \right)}{\frac{\Delta x}{x}} = 1.
\]
Thus,
\[
\frac{d}{dx} \ln x = \frac{1}{x}.
\]
This proves that the derivative of \( \ln x \) is
\[
\frac{1}{x}.
\]
Using this process, we can prove the derivatives of many other functions. We leave this as an exercise for the reader. Below is a table of commonly used functions and their derivatives:
\[
\begin{array}{|c|c|}
\hline
\text{Function } f(x) & \text{Derivative } f'(x) \\
\hline
c \text{ (constant)} & 0 \\
x & 1 \\
x^a \quad (a \in \mathbb{R}) & a x^{a-1} \\
e^x & e^x \\
a^x & a^x \ln a \\
\ln x & \frac{1}{x} \\
\log_a x & \frac{1}{x \ln a} \\
\sin x & \cos x \\
\cos x & -\sin x \\
\tan x & \sec^2 x \\
\sec x & \sec x \tan x \\
\csc x & -\csc x \cot x \\
\cot x & -\csc^2 x \\
\sin^{-1} x & \frac{1}{\sqrt{1 - x^2}} \\
\cos^{-1} x & -\frac{1}{\sqrt{1 - x^2}} \\
\tan^{-1} x & \frac{1}{1 + x^2} \\
\cot^{-1} x & -\frac{1}{1 + x^2} \\
\sec^{-1} x & \frac{1}{|x| \sqrt{x^2 - 1}} \\
\csc^{-1} x & -\frac{1}{|x| \sqrt{x^2 - 1}} \\
\hline
\end{array}
\]
We will use these formulas in calculating derivatives of more complicated fucntions.